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Abstract. In this paper taking into account Takeno and Homma's model Hamiltonian we 
have studied the influences of the longitudinal vibration on the properties of solitons in 
E - D N A  with infinite length. It  is shown that the longitudinal vibration will influence the 
amplitude and the width of the soliton. However, the influences due to the longitudinal 
vibration may be neglected ordinarily because the corrections have the magnitude of 0 ( 6 * ) ,  
where 6 is a small coupling constant. 

1. Introduction 

In recent years many authors have studied the soliton excitation of DNA chains [ 1-51. 
Yomosa [2,3], Takeno and Homma [4,5] have studied the soliton excitation of B-DNA 

by using a dynamic plane base-rotator model based on the Watson-Crick model [ 6 ] .  
They have considered the interstrand base-base interaction energy and the stacking 
energy of the intrastrand neighbouring base-base interaction, but the longitudinal 
vibration was neglected. Calladine has pointed out that there are repulsive forces 
between purine bases in consecutive base pairs but on opposite backbones. These 
repulsive forces between the base pairs are resisted by stresses in the helical backbones. 
The change of main-chain torsion angle shows that there are elastic strain forces in 
both strands [7]. The chain elastic constant has been obtained [8]. Thus one should 
ask how the soliton excitation in D N A  influences the non-rigidity of the strands. On 
account of Takeno and Homma's model Hamiltonian we have considered the longi- 
tudinal vibration coupling with the hydrogen bond and stacking energy to study the 
soliton excitation in B - D N A  chains with infinite length, to ascertain the soliton solution 
in analytic form, and to discuss the influence of the longitudinal vibration on the 
properties of the soliton such as the shape, amplitude, width and effective mass, etc. 

2. The Hamiltonian and equation of motion 

In the model of Homma and Takeno [5] the interstrand base-base interaction energy 
V(p,, pk) of the nth base pair, the stacking energy U(q , , ,  9:) of the intrastrand 
neighbouring base-base interaction and the kinetic energy of the nth base pair are 
written as, respectively, 
V ( ( C ~ ,  c~k)=hn(2 -cos  pn-cos pk:,)-An[l-cos(9n-pL)I 
U(cP,, 9:) = J n [ 1 - C O S ( ( c n + , - 9 n ) l + J k [ 1  -CoS(Qk+1-9k)l 

x+lng+'I' ' f 2  
2 nQn. 

t Supported by the Science Fund of the Chinese Academy of Science. 
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The Watson-Crick model of B-DNA with helical axis taken in the Z direction is 
schematically shown in figure 1 in which each base is depicted by an arrow with unit 
length, and the complementary base pair is indicated by a conjugated arrow directed 
inward. Here the quantities h, and A, are interaction constants characterising the local 
field energy and hydrogen-bonding energy of the nth base pair, respectively. J,, and 
JL are interaction constants associated with the nth bases in S and S', respectively. 
I,, and 1 ;  are the moments of inertia of the nth bases in S and S',  respectively. 

According to Calladine's work [7] the strand in D N A  is not rigid. Instead it seems 
to be an elastic chain with strain forces. Thus we can assume that U, is the longitudinal 
displacement from the balance position ofthe nth base pair. We denote the longitudinal 
elastic constant along the double helix main chain by a. Let M be the average mass 
of a pair of nucleotides. Then the longitudinal vibration energy can be written as 

c [fMMziZ, +$a( U,+, - U,)*]. 
n 

In view of the longitudinal vibration above, the Hamiltonian of the system will be 
changed. We assume the constants of stacking energy J,,, Jk to be dependent on the 
distance between the nth and the (n + 1)th base pair, but the constants of the local 
field energy and the hydrogen-bonding energy h,, A, must be symmetrically dependent 
on the distances between the nth and the (n  * 1)th base pair. Introducing the coupling 
coefficients p, y,  K we expand J, ,  JL and h,, A, in terms of u , , + ~  - U,, and U, -U,-, up 
to first order 

J,, = J L = So + p ( U, + - U, ) 

h, = ho+ Y ( U n + l -  4 - 1 )  

A, = A o + K ( U , , + l - U , - 1 ) .  

In fact these coupling constants p / S o ,  y / h o ,  K / A ~  must be small. 

5 I 5' 

l a )  ( b l  

Figure 1. ( a )  Schematic feature of the B - D N A .  The sugar-phosphate backbones of the 
double helix are represented as ribbons S and S' and the rung-like base pairs connecting 
them as arrows. ( b )  Projection of the nth pair of bases (arrows) in the xy plane. 
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and take a transformation of variable 

5 = 5 - vt. 
Thus ( 2 . 3 ) ,  ( 2 . 4 )  and ( 2 . 5 )  are reduced to 

( 2 . 9 )  

(2 .10)  

where 

V i =  a / M .  
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For the infinite long chain the boundary conditions may take the form 

l = O  cp = cp’=  

if we assume that the centre of soliton is at 5 = 0. 
Equations (2.7)-(2.11) are motion equations of B-DNA with infinite length. 

(2.11) 

3. Soliton solution 

Considering the boundary conditions (2.11), (2.7) can be integrated directly. Then we 
obtain 

(3.1) 
where integrating constant A - 4 y - 2 ~ .  According to [5] we substitute (3.1) into (2.8) 
and (2.9). We limit our solution for two special cases. 

In the first case let cp = cp’, from (2.8) and (3.1) we have 

where 

h0 

I (  v:- V’) 
a’= 

1 
MI( Vi- V’)( V:- V2) 

b2 = (3.3) 

Using the successive approximation by iterations to solve (3.2) we assume that 
p = y = K = 0 for the zero-order approximation, i.e. the longitudinal vibration can be 
neglected. Equation (3.2) can be reduced to 

(3.4) 
Equation (3.4) is a classical sine-Gordon equation. Considering (2.1 1) its solution 
is [ 5 ]  

(3.5) 
For the positive kink we substitute the solution of the zero approximation cpo into 

d‘(p/d12 = a’ sin cp. 

cpo = 4 tan-’ exp( * U S ) .  

the right-hand side of (3.2) and obtain 

d’ sinh( a l )  sinh( a l )  
+8b2(4y2-4a2py -3a4pZ) (3.6) -- d;- -2a2 

cosh2(a{) cosh4( a l )  * 
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Integrating (3.6) and using boundary conditions (2.11) we obtain the solution of the 
first-order approximation cp1 of (3.2) 

(3.7) 

In the second case let Q = - c p ' ,  then from (2.8), (2.9), (3.1) and (3.2) we can obtain 

-sin Q - r] sin 2~ -- d2Q 
d z 2  

where 

z= a l  77 E ho/ho. (3.9) 
Similarly, we can obtain the different solutions of the zero-order approximation of 
(3 .8)  with different values of 7. For example, when 171 <f, we have [5] 

q 0 = 2  tan-1[*(l-277)1/2 cosech(l-2r])'/',??j. (3.10) 

Here we also ascertain the solution of the first-order approximation of (3.8), but only 
for the special case above. For the positive kink we substitute cp0 of (3.10) into the 
right-hand side of (3.8) and obtain 

- sin Q - r] sin 2~ d2Q -- 
d z 2  

B 
((sinh'[( 1 - 277)'/'z] + (1 - 2 ~ ) ) ~  

+sinh[(l-2r]) ' / 'z]  

C 
[sinh2[(1 -277)'/22]+(1 -27)13 

+ 
D 

[sinh2[(1 -271) ' /~.Z]+(l  -27)14 
+ 

where 

(3.11) 

8b2(1 -2v77)3/2 
B =  [ 3 a4p2( 1 - 27)2  + 4a2p ( ')' - 2K )( 1 - 2 r] ) - 4( y - 2K)'] 

U 2  

32b2( 1 - 2 ~ ) ~  
a 2  

C =  [ a 2 (  1 - 2r])3/2p(3t7p~2 + 2K) + 2( 1 - 27)'"( y - 2K)( a2r]p  - 2 K ) ]  

32b2( 1 -2r1)'/~ 
D =  ( 6 7 2 p 2 a 4 + 8 7 ~ p U 2 - 8 ~ 2 ) ,  

a2 (3.12) 
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Integrating (3.11) and using conditions (2.11) we can obtain the solution of the 
first-order approximation 

cp1 =q0-  R tan-'[(l -277)-'/2 sinh[(l -277)'/22] 

+ S W ( Z )  
sinh[(l -277)'/22] 

+ 

[sinh2[( 1 - 277)'/2z] + (1 - 277)12 
sinh[(l -277)'/2Z] + P  + sw, 

sinh2[(1 -277)1/22]+(1 -277) 
(3.13) 

where 

D 
Q = -  

12( 1 - 277)277 

(3.14) 

w,= lim ~ ( 2 ) .  
Z-PX 

A similar solution can be obtained for the case of 7 > f  and 77 < -4. 

4. Discussion 

From the above discussion, by considering the longitudinal vibration we find that at 
the first approximation the soliton solution of DNA chains can be written as 

Q l = Q o + ~ Q  (4.1) 
where the correction term A Q  is 

when Q = Q' and 

AQ = -R  tan-'{(l -277)-'12 sinh[(l-2q)'"al]} 

+ Q{sinh2[(1 -277)'/2al]+(1 - 2 ~ ) } - ~  sinh[( 
when cp = - P I .  

-277)'/2al] +. . . (4.3) 

The coefficients in the above expression have been given by (3.7) and (3.14). 
These can easily be estimated. By defining S = max(p/So, y /  h,, k / h , )  the coefficient 
N in (4.2) can be written as 

N - V20( i j2 )  (4.4) 
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where O(S2)  represents the second-order correction of S and V is the velocity of the 
soliton. This correction consists of two parts: the correction to the amplitude and to 
the width of the soliton. However our calculation shows that these corrections are 
very small. Similar corrections can be obtained for the case of cp = -cp'. These results, 
which are different from (4.4), are independent of the velocity V. We may therefore 
conclude that the influence of the longitudinal vibration on the soliton in the case of 
cp = cp' increases with the increase of soliton velocity. 

Moreover we can calculate the kinetic energy of longitudinal motion along the 
helix of the D N A  chain. I t  is 

where n denotes the label of the nth nucleotide, L the distance between the nearest- 
neighbouring nucleotide, M the mass of unit DNA, x is the coordinate along the helix 
axis and l = x -  Vt. As we know that (4.5) can be integrated using (3.1), if we are 
interested in the lowest correction we can substitute the solution without longitudinal 
coupling into the right-hand side of (3.1) and substitute d u / d l  obtained from (3.1) 
into (4.5) and perform the integral. For example, we have obtained the following 
approximate expression of Ek at low velocity by straight calculation for the case of 
cp = cp': 

(4.6) 

If the soliton is regarded as a quasiparticle, the contribution to the soliton is 

m, = o ( s * ) M .  (4.7) 

Similarily we can show that another contribution to the soliton due to the correlation 
between the longitudinal motion and the motion of the rotational angles are also 
quantities of the second order. 

Similar results can be obtained for the case of rp=-cp' .  This shows that the 
corrections of the longitudinal coupling to the effective mass of the soliton are small 
quantities of the second order. 

Conclusively, the above results show that corrections of the longitudinal vibration 
on the behaviour of the soliton in the long chain of DNA are always to second order 
of the coupling constant. Therefore these can be neglected ordinarily, and it also 
explains the exact reason why the results obtained by neglecting the longitudinal 
vibration in the early theories are reasonable. 
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